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Non-propagating solitons of the non-isospectral and variable 
coefficient modified KdV equation 

W L Chan and K S.Li 
Department of Mathematics, Science Centre, The Chinese University of Hbng Kong, 
Shatin, NT, Hong Kong 

Received 14 June 1993, in final form 27 September 1993 

Absbact. The AKNS system associated with a non-isospectral and variable coefficient mKdV 

equation is presented. The method of inverse scattering is.adapted to the non-isospectral 
situation to determine the time evolution of the scattering data. N-soliton ~olutions are 
obtained. Examples of oscillating or standing one-solitons with unusual dynamics are given. 
An in-depth study of the two-soliton Case i s  carried out by appropriately decomposing the 
solution into individual soliton elements in order to examine their interactions. Breathers 
are also constructed. 

1. Introduction 

It has been observed that when a more realistic model is used to describe the propagation 
of waves in inhomogeneous media the equation may become explicitly dependent on 
time. In general the Lax pairs associated with such equations have a spectral parameter 
varying with time. Earlier Chen and Zheng studied the non-isospectral and variable 
coefficient Kdv  equation [l] and explicit solutions were constructed by the use of Back- 
lund transformations. In [2], its initial value problem was solved by the method  of^ 
inverse scattering. Solitons with non-standard dynamics were obtained, providing 
mathematical models for some of the non-propagating (oscillating or standing) solitons 
discovered experimentdiy~ [3,4]. Indeed, if we are interested in the K d v  or mKdv-type 
models for non-propagating solitons, constant coefficient and isospectral versions would 
not be sufficient since they simply do not have such solitons. It is almost necessary to 
consider tbeir variable coefficient and non-isospectral extensions. However, connections 
of the time-dependent coefficients.and non-isospectral terms to the experimental results 
in [3] are interesting but beyond the scope of the present paper and remain t o ~ b e  
studied. Another viewpoint is that the additional non-isospectral terms introduced'may 
be considered as perturbations in such a way that the resulting equation is still inte- 
grable. Furthermore, the free parametric functions can be chosen to shape some of the 
non-standard dynamics of the solitons. i.e. to influence their motions. For two-soliton 
solutions, we decomposed them into individual soliton elements and examined their 
interactions, leading to a better understanding of the underlying dynamics. 

The aim of this article is to study the non-isospectral and varying coefficient mKdV 
equation by the method of inverse scattering in the spirit of [2,'5,6]. Specifically we 
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consider the following equation 

W L Chan andK S Li 

U,+ K~(u,,,+ ~&)-~(xu ,+u)  + KIU,=O (1.1) 

where KO, Kl and h are continuous functions of t. It reduces to the standard d d v  
equation [7] when Ko=l, K , ~ h ~ O . H e r e w e c a l l ( l . l )  thewmKdvequation(~vstands 
for non-isospectral and variable coefficients). Equation (1.1) belongs to a class of non- 
linear evolution equations already studied in the literature. In particular, for equations 
related to the Zakharov-Shabat spectral problem, see, for example, the paper by Newel1 
[5], and the references quoted there. Here, we explicitly allow the eigenparameter to 
vary according to the ordinary differential equation A,=h(t)d. We shall show through 
the solutions presented in this paper that the factors that contribute to the presence of 
non-propagating solitons are (i) the non-isospectral scattering problem, and (ii) the 
time varying coefficients of the equation. 

The paper is organized as follows. In section 1 we present the AKNS system [8] 
associated with (1.1). In section 2,'the method of inverse scattering is adapted to the 
non-isospectral situation and the evolution of the scattering data is obtained. N-soliton 
solutions are constructed in section 3.One-soliton solutions with non-standard dynam- 
ics are presented in section 4. In section 5, an in-depth study of the two-soliton case is 
carried out by appropriately decomposing the solution into individual soliton elements 
in order to examine their interactions. It is interesting to note that the topic of structure 
during interaction of the soliton solutions, even for the standard Kdv equation, has 
recently received considerable attention 19, lo]. The decomposition -for the N v d c d v  
equation here is new and it may well be generic for most NV generalizations of other 
soliton equations. In section 6, solutions known as breathers are presented. 

Equation (1.1) is derived as follows. We consider the following AKNS system 

Vv,=NV N=["  C -A "1 (1.3) 

with 

d,= ha. (1.4) 

From the consistency condition of (1.2) and (1.3) 

Mt - N,+ M N  - NM =O (1.5) 

it follows that 

id, +Ax-  uC-uB =O 

U,+ Cr- 2iLC+2Au= 0. 

U, - B,- 2 i U -  ZAu= 0 

Inserting 
3 2 2 

a,=ha A = C AiX B= B?? andC= Ci? 
i-0 ( - 0  I-0 
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into (1.6) and equating the coefficients of the powers of A3, L2, A and A", respectively, 
we obtain the following results: 

A3 and A2 are independent of x 

B2=L43~ c,=-iA,u 
_* 

BI =iA2u+ A 4 2  

Al=-ihx+A3u2/2+ yI 

Cl = -iA2u+ A3ux/2 
(1.9) 

where yI is independent of x, and 

Bo=iA3uJ4 + iA3u3/2- A2u,/2 +hxu+iy,u 

CO = -iA3u,,/4-iA3~/2 - A2u,/2 - hxu- i y l u  (1.10) 

An = -A2u2/2 + yo 

where yo is independent of x 

ut - iAs(u,,,+ 6u2u,)/4 + Az(u, + 2u3)/2 - hxu, - hu - i y ~ , -  2y0u = 0 

u,-iA3(uxxx+ 6u2ux)/4 - A2(u,, +2u3)/2- hxu, - hu- iylux+ 2y0u=0. 

(1.11) 

(1.12) 

From (1.11) and (1.12) it follows that if A2=0, yo=O then (1.11) and (1.12) are the 
same. In particular, choosing A3=i4Ko and y1 =iK,, equation (1.11) with A2=0, yo= 
0 is just the rwmKdv equation (1.1). 

Then, from (1.7)-(1.10) it follows that (1.1) has the Lax pair (1.2)-(1.4) where 

A =  -i4&A3 + iL(2&u2 -hx+ Kl) 

B= 4KnuL2+ 2&u,A- Kou,, - 2K0u3 + hxu - K1u 

C= -4K0uL2+ 2i&u&+&uXx +2KOu3 - hxu + KIu. 

(1.13) 

(1.14) 

(1.15) 

2. The scattering data 

Now we consider the scattering data [5,6] of the problem (1.2) and (1.4). Suppose that 

lml lux1 and luxxl -0 as IxI+m (2.1) 

andf(x, y, t).T(x, y, t ) ,  g(x, y ,  t )  and g(x, y, t) are Jost functions of (1.2), which satisfy 
the following boundary conditions 

thus 

(2.4) 
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where a and b depend on t and 1. From (1.13)-(1.15) it follows that as IxI+cc 
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(2.5) 
-4 i~ , ,%~ +i(-hx+ &)a, 

0 
N+R= 

Since M and N in (1.2) and (1.3) satisfy the condition (1.5), it is easy to show that 
5-  Nf is also a solution of equation (1.2). Thus 

5 - N f = ~ i f + ~ , ?  (2.6) 

where uI depends on t ,  1. From (1.2), (2.2) and (2.5) it follows that as x+-m 

1 --ih- i[-4KOI3+(-hx+K,)1] -jh 

=-ihx1[0]e [ 0 le 
and 

Thus, by using (2.6) we obtain 

C z = O  uI = -i( - 4 ~ ~ 1 ~  + Kin). 
In view of (2.4), (2.5) and (2.7), we see that as x-m 

(2.7) 

and 

Comparing (2.6), (2.8) and (2.9), we obtain the following time evolution equations 
of the scattering data a, b appearing in (2.4) 

a,=O (2.10) 

i.e. 

U = &  n(t))=a(a(O))=a Aexp - [ ( s b h d r l l  
(2.11) 

and 

b,= -2bi(-4KOA3 +K& (2.12) 
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i.e. 

b=b(t,A(t))=b(O, a.(o)) e~p[-2ij0'(-4K0a3+~1a) dt]. (2.13) 

Furthermore, suppose A,{t) is an eigenvalue of equation (1.2), i.e. it satisfies the 

a(Aj(0)) =O (2.14) 

following relations 

and 

Aj(t) = A,(O) exp(I0' h dt) (2.15) 

by (2.1 I) and (1.4). Then the normalization coefficient [6] 

cj=cj(t, A,(t))=ib(t, ,$(t))/&(L,{O)) exp - ( jo'hdf) 

(-4K0Aj(t)+KlAj(t)) dt+ jo' h dt] ~ (2.16) 

where 

(2.17) 

Here (2.11), (2.13), (2.15) and (2.16) give the time evolution of the scattering data 

cj(0, MO)) = W O ,  WO)/&(W9) 
&(b) = (d/dbMC). 

a, b and A,, c,. 

3. N-soliton solution 

Now we use the scattering data cj and A,(t) to restore u(x, t )  in (1.1). To this end, 
following the inverse scattering method for the AKNS system [5, 6,8], we obtain 

u(x, t ) = - Z x 1 ( x , x ,  t )  13.11 

satisfying the initial condition 

u(x, 0) = uo(x) (3.2) 

where U&) satisfies the condition (2.1) and with the initial scattering data a(A(O)), 
b(0, A(0))  and cj(O, Aj(0)), A,(O); X , ( x ,  y ,  t )  satisfies the Gelfand-Levitan system 

X 1 ( x , y ,  t)--F(x+y, t ) -  k 2 ( x , s ,  t)F(s+y. L) &=O l- 
and 

m 

( X S Y )  (3.3) 
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with 
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(3.4) 

and 

4(1) = Tj(0 + i5,W 5 j ( t )  > 0 j = l , 2 , .  . . , N. (3.5) 

a,(!) = -a:(t) (3.6) 

The eigenvalues are simple and they are either pure imaginary or 

is also an eigenvalue (z* is conjugate to z.), and 

C? if k,(t) is pure imaginary 
ifa,(t)=-a,+(t). (3.7) 

Assume that 

b(t, A)=O (3.8) 

where A. is real, and all S ( t )  are pure imaginary, then u(x, t )  defined by (3.1) is the N- 
soliton solution of the i ” K d v  equation (1.1). 

To solve system (3.3) for X l ( x . y ,  t ) ,  we let 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 
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where IN is the unit square matrix of order N; 

A, = 

jth column 

1 0 . . . 0 -cI exp(ixk,(t)) 0 . . . 0 i ... 
0 1 . .. 0 -c,exp(ix&(t)) 0 . .. 0 : . . .  

.. . : -B ... ... 
0 . . . 0 -c.exp(ixkN(t)) 0 . . . 1 i 

61 I . . . bid-1 0 bi.j+i ... biN i ... 
. . .  ... 

bNI . . .  ~ N , J - I  0 ~ N , J + I  . . - bN,v j IN 
we obtain 

klJ(x, t )  =det Al/det A, 

X { ( x ,  y ,  t )  = 1 exp[iy.5(!)] det A,ldet A. 
N 

j = 1  

889 

(3.14) 

From the above result and (3.1) it follows that the N-soliton solution of (1.1) is 
N 

u(x, t )  = -2 C exp[ix&(f)] det Aj/det A. (3.15) 
i= I 

. 4. One-soliton 

Now we consider the case N =  1. As stated in section 3, the eigenvalue &(r)  is pure 
imaginary and 

where 51(0)>0. From (2.16) and (3.11) it follows that the matrix B, det A, and det A, 
defined by (3.12)-(3.14) become 

B =  [ h I =  Kspn cl) exp(9J1 

where 

ifz<O 
ifr=O 
i fz>0 
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with 
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VI =InlcdO, i41(0))/251(0)l 
(since cI is real, see (3.7) in section 3) and 

(4.3) 

det A = 1 + b?I = 1 +exp(2~$~) (4.4) 
and 

detA, =-cl exp[i~J.~(t)]=-~~(O) sgn[c,(O, igl(0))] exp[j"hdt] 
0 

(4.5) 

Thus, from (4.4), (4.5) and (3.15), we obtain the one-soliton solution of (1.1) 

u(x, t)=-2exp[ixkl(t)]detAl/detA 

=251(0) sgn[c~(O, i5dO))I exp[l0'h df] sech(h) 

where 41 is defined by (4.2). This result is similar to (6.131) in [5]. 

Exumplel. SupposeKo=l,h=Kl=O, thenequation(1.1)reducesto themKdVequation 
and (4.6) becomes 

(4.6) 

Let us present some examples. 

u(x, 0=251(0) sgn[cdo, i5dO))l sech[-251(0)~+85:(0)t+ vr11 
which is the one-soliton of the mKdV equation. This appeared in [7]. 

Example 2. Suppose K,=3/[4(l+t2)], and ~,(O,i5~(0))=2~1(0)=6, h=Kl=O, then 
(4.6) becomes 

u(x, t)=6 sech(-6x+6'tan-' t )  

which is an asymptotically standing soliton as shown in figure 1. 

Exumple3. Suppose K0=3cost/4, and cl(0,i~l(0))=2~l(O)=6, h=&=O,  then (4.6) 
becomes 

Y 

Fignre 1. Asymptotieally standing soliton u(x. f) 
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Figure 2. Oscillating soliton u(x, t ) .  

u(x, 1)=6sech(-6x+6sint) 

which is an oscillating soliton as shown in figure 2. This corresponds to the result in [2]. 

Example4. SupposeKl=-36&andh=0, c1(O,i~~(O))=2~~(0)=6,  then (4.6) becomes 

u(x, t)=6 sech(-6x) 

which is a standing soliton. In general, from (4.2) we know that if h=O and KO, K, 
and tl(0) satisfy the following condition 

K1=-4K&(O) (4.7) 

then equation (1.1) has a standing soliton. Examples 1-4 are isospectral. 
Next, let us consider the non-isospectral case. By direct computing, we can conclude 

that if KO, KI , h and the scattering data t1(0), ~ ( 0 ,  itl(0)) of uo(x) satisfy the following 
conditions : 

CO, itdo)) #251(0) (4.8) 

P= Inlcl(0, it1(0))/2tdO)I/251(0) (4.10) 

then (1.1) has a standing one-soliton solution u(x, t )  defined by (4.6) with 

~ l = - 2 ~ 1 ( 0 ) ( ~ - P j ~ x p ( ~ o ~  hdr). 

Exampfe 5. Suppose h = -cos r/(z + sin t )  

&= (h/36) exp[-Z Jar h df] 

(4.11) 
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Figure 3. Standing soliton with periodically varying amplitude, 

and Kl =0, (t(0) = 3, ~ ( 0 ,  iC,(O)) = 6 e', then (4.8) and (4.9) hold, thus, there is a stand- 
ing one-soliton 

u(x, t)=[12/(2+sin t)] sech{-[12/(2+sin t)](x-I)} 

with its amplitude varying periodically, as shown in figure 3. 

Example 6. Suppose h=-2t, &=exp(3t2)/36,Kl=0 and (,(0)=3c1(O, it1(0))=6, 
then (4.8) and (4.9) fail, thus, (4.6) becomes 

u(x, t)=6 exp(-?) sech{-6xexp(-t2)+6t}. 

As t goes from -a, to +a,, the wave n(x, t). propagates from left to right along the x- 
axis and its amplitude first increases from 0 (as t goes from -m to 0) and then decays 
(as t goes from 0 to +m), as shown in figure 4. 

Exmple 7. Suppose h=-cos t/(2+sin t ) ,  &=cos t[(2+sin t)/213/18 and K l =  
0, 51(0)=3, ~ ( 0 ,  it1(0))=6, then (4.8) and (4.9) fail, thus (4.6) becomes 

u(x, t )  = [12/(2 + sin t ) ]  sech{ -[ 12/(2+ sin f)]x + 12 sin I } .  

Figure 4. Soliton with decaying amplitude in both directions. 
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U . 12t 

Figure 5. Periodically oscillating soliton with periodically varying amplitude. 

As t goes from -m to +m, the wave u(x, t)  oscillates periodically in the interval [-I, 31 
on the x-axis and its amplitude oscillates periodically in the interval 14, 121, as shown 
in figure 5. 

E x m p l e  8. Suppose h=- l j ( l+p) ,  &=exp(3 tan-’ t), Kl=O and t1(0)=3, 
c,(0,il(0))=6, then (4.8) and (4.9) fail, thus (4.6) becomes 

u(x, t)=6exp[-tan-I t ]  sech{-6xexp[-tan-’ t]+6  tan-^' t ) .  

As t goes from --CO to +a, the wave u(x, t )  is asymptotically standing and its amplitude 
tends to 6 exp(nj2) (or 6 exp(-s/2)) as t+-m (or +m), as shown in figure 6. 

5. Two-soliton and its decomposition 

For the two-soliton solution u(x, t )  of (l.l), it can be seen that it separates into two 
single-soliton elements asymptotically for large t .  Here, we are interested in a finite time 
decomposition of U into two individual soliton elements and they coincide with the two 
soliton elements for large t. This decomposition shows clearly the structure of the two- 
soliton solution during interaction. 

Figure 6. Asymptotically standing soliton with asymptotically varying amplitude in both 
directionS. 



From (5.1)-(5.5) and (3.15) it follows that 

u(x, I) = -2[exp(iA,x) det A ,  + exp(&x) det A,]/det A 

=[-2U,/d'/z)] cosh ,$2/A+[-2iA2/c9p(1p)] cosh #]/A (5.6) 

(5.7) 

where 

A =  (cosh $()(cosh 42) + [(1-8)/2rl]  [I + cosh($i -42)]. 

Now we consider the case that the eigenvalues & ( l )  and b(f) i.e. &(O) and &(O), 
both are pure imaginary. Without loss of generality we assume 

M O )  =it10 M O )  = i t 2 0  510> 520'0.  (5.8) 

c9p'/2=[(a, -a2)/(& +a2)] = [( ha- 520)/( tI0+ 520)1 =exp(y) (5.9) 

Then, it is easy to show that y, yj and defined by (5.2)-(5.4) become 

IcJ(0, iEp)I/25p =exp(vj) (5.10) 

,$j= - 2 b  exp(l0'h dt)+2 1,' [4KoC2 exp(3 1;: dt)+KIEio exp(J: h dt)] ds 

+~j+y+i{l-sgn[cj(0,itj0)]}~/2.  (5.11) 
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Thus, u(x, t) is real and is a two-soliton. (5.6) may be rewritten as below 

4 x ,  o=uI(x,  t)+uz(x. 0 (5.12) 

where 

and 

4j is defined by (5.11); sgnz is defined by (4.1); ~ 

, 

p ( h ,  ~2)=1/{1+[(1-6) /261[1 +cosh(41-4,)1sech(4~) sech(42)). (5.14) 

In particular, if h=Kl  = O  and &= 1, then (5.12) reduces to the two-soliton ofmKdv 
equation [6]. 

Formula (5.12) with (5.13) and (5.14) decomposes the two-soliton u(x, t )  of equa- 
tion (1.1) into individual solitary waves ul(x, 6) and UZ(X ,  t ) .  In  the spirit of [2], such 
decomposition is used to determine the time td and the coordinate xd at which the 
solitary waves uI(x, 1 )  and u2(x, t )  interact, during which the two-soliton becomes a 
single peak solitary wave. td and xd satisfy the system 

Qj=O j = l , 2  (5.15) 

where 4j is defined by (5.1 1). We illustrate these by some examples. 

Example 9. Suppose h=O (isospectral), Kl = -36K0=-9 cos t/2 and 510=3, 5 2 0 =  1, 
cl(O, i t lo)= 12, cz(O, iE2,,)=4. Then the system (5.15) becomes 

dl = -6x-In 2= 0 
{b2= -2x - 8 sin t - In 2 = 0. 

Solving thh, we obtain t d ~ - 0 . 0 5 8 + 2 p n  or td=0.058+(2p-l)n,  p=O, 
f l , f 2  ,..., fn , .~ .  ., andxdN-0.1155. Then 

ul(x, 6)=12p(qh, b2)sech(-6x-ln2) 

u2(x, t)=4p(q41, 4,)sech(-2x-ln2-8sint) 

where 

P ( $ ~ ,  $2) = l/{l+ 1.5[1 +cosh(-4x+8 sin t)] 

xsech(-6x-ln 2) sech(-2x-ln2-8 sin t ) } .  

Figure 7 is the graph of the two-soliton u(x, t )  travelling along the x-axis. I t  shows 
that in the time period [-~/2,3n/2],  uI stays fixed at x=xd= -In 2/6 while u2 oscillates 
about uI between xmin=-7 and xm,,-6 with period 2n, where ut is the higher wave 
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Figure 7. Periodically oscillating two-soliton u=u,  t ut 

and u2 is the lower wave as shownin figure 7, and uI and uz interact twice each period, 
since td has two values in a period. 

Example IO. Suppose h=O (isospectral), Kl=-36Ko=9texp(-tz) and <10=3, 520=1,  
~ ~ ( O , i ~ ~ ~ ) = 6 ,  ~ ( 0 ,  igzo)=2. Then the system (5.15) becomes 

=-6x-ln 2=0  L 2 -  - -2x-h 2-8[exp(-tz) - 1]=0. 

Solving this, we obtain td-f0.24 and xd=--0.1155. Then 

uI(x,f)=l2p(Q1, $2) sech(-6x-In2), 

U&, t)=4p(BI, q$z) sech{-2x-ln 2-8[exp(-?)- 11) 

where 

P ( $ ~ ,  q52)= 1/{1+ 1.5[1 +cosh(-4x+8(exp(-t2)- l))] 

x sech(-6x-In 2) sech(-2x-ln 2-8(exp(-t2)- 1))). 

Figure S(a)-(c) shows that for f Q  -10, the two-soliton u(x, t )  is in the finite limiting 
position-interval [-0.35,7.5] (as t-t-co) on the x-axis, the left wave is just U I  and 
the right wave is just uz. For -1O<t<tdf~-0.24), U and u1 travel to the left but UI 

stands still until ut and uZ interact. For t near -0.24, at the point x near xd=-O.l155, 
U becomes a single-peak wave whose amplitude decreases because uI and uZ interact 
here, as shown in figure 8(b). (In this case, the amplitude of ut also decreases and uz 
changes from a single-peak wave to a double-peak wave, not shown in figure 8(b).) 
After t=0.24, i.e. for 0.24<t<+oo, U travels back to the original position (as t-t-co) 
on the x-axis and so does u2 and uI always stands at the original position, as shown in 
figure S(c). That is, U is an asymptotically standing wave. 

Similar to section 4, it is easy to show that if KO, Kl , h and the scattering data &= 
<,{a), c,(O, itp) of U&), j =  1,2, . . . , satisfy the following conditions: 

I c,(O, i5p)l =e-7 (5.16) 

and 
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(0) f=-10, -7.8, -5.6, -3.4, -1.2 (b) f=-I.Z, -0.6, 0,0.6,  1.2 

10 

Figure 8. Asjmptotidly standing two-soliton P= 

U , + U 2 .  ( e )  f=1.2. 3.4, 5.6, 7.8, ,IO 

where y-is as in (5.9) and 

Pj=[lnlc(O, itdPtpl+ ~ l l 2 t ~  (5.18) 

then (1:l) has a standing two-soliton solution u(x, t )  defined by (5.12) and (5.13) with 

C$j= -25&- P,) exp ( Jo' h dt) . (5.19) 

Example 22. (standing two-soliton). Suppose h = -cos t/(2 +sin t )  (non-isospectral), 
Kl =0, and 

tlO=3, <20=1. q(0, ic1a)=12eI8, cz(O, i<20)=4e2'3. Then (5.16)-(5.18) . hold, thus, the 
system (5.~15) becomes (5.19), i.e. 

=-lZ(x-3)/(2 +sin t )  = O  
&= -4(x- 1/3)/(2+sin f) =O.  
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Figure 9. Standing two-soliton U=”, tuz .  

This system is not compatible, i.e. the waves uI(x, t )  and a(x ,  t )  do not interact at 

ul(x, t)=[12/(2+sin t)]p(q51, 4 2 )  sech[-12(~-3)/(2+sin t)], 

u2(x, t)=[4/(2+sin t)]p(q5, , q5J sech[-4(x- 1/3)/(2+sin t)] 

all and are standing solitary waves. Here 

where 

p(q5,, &)= 1/{1+1.5(l+cosh[-8(~-13/3)/(2+sin t ) ] }  

x sech[- 12(x- 3)/(2+sin t ) ]  sech[-4(x- 1/3)/(2+sin t ) ] } .  

Figure 9 shows that for all times, !he two-soliton u(x, t )  stands in the interval [-2,5] 
on the x-axis while ul(x, t )  (the right wave) stands in [2,5] and u2(x, t )  (the left wave) 
stands in [-2, 21. But their amplitudes oscillate periodically. 

Periodically oscillating or asymptotically standing two-solitons which are similar to 
that of [2] also exist for NvntKdv equation (1.1). But we omit them here. 

We have demonstrated in the above examples that the dynamics of !he solitons of 
the NvmKdv equation is richer than that of their counterparts for the standard mKdv 
equation. Thus, their motion can be oscillatory, standing, asymptotically standing, 
amplitude pulsating and more. This is also true for !he Kdv case. The reader can easily 
convince themselves of this by adjusting appropriately the coefficients and the non- 
isospectral terms even though not all of them were shown in the previous paper [2]. In 
the following section we present breather-type solutions which are not present in the 
KdV Case. 

6. Further result @reather solution) 

Here we consider the case N = 2  and &=-A:, that is 

%= q t )  = q ( - l ) j +  i f =  [qo(-l)’+ it01 exp (6.1) 

where j =  1, 2 ;  q o ,  <0>0; Then, .d and y, yrjdefined by (5.2), (5.3) become 

at1’’= [(Al -a2)i(nl +&)]=i(qo/tO)=exp(y) (6.2) 
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bj= 2[-cO+iqo(-1)’] x exp(1‘h dt)- 2; 1‘ [ -4K0[170(- l)’+iC!]’ exp( 3 1; h df) 
0 0. 

where 

$”=2qox exp(1’ h d!) + 2 1‘ {4&[q: - 3q0$] exp(3 1; h dt) 
0 0 
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Hence, we have 

cosh cosh{# ' + i[( - I)'@ ' I -  n( -1)' + ~ / 2 ] }  

= (-1)' cosh @ sin 6- i sinh @ cos 6 
and 

cosh(#] - 42) =cosh[i(-24"+ 2n)l =cos(-24"+ 2 r )  =cos 24 ". 
From (5.7), (6.2), (6.10) and (fi l l) ,  it follows that 

(6.10) 

(6.11) 

A=(cosh bi)(cosh 4 2 ) + [ ( 1 - 4 / 2 4 [ 1 + ~ 0 ~ h ( 4 1 - 4 2 ) ]  

=-(cosh2@sin2 @'+sinh2@cos2q%")-[(~~+q~)/q~]cos2 $" 

= -[cosh2 @+(&$j) cos2 @'I. (6.12) 

Furthermore, it is easy to show that 

-(2iJ.l/,4112) cosh b2 

=exp[ -y'+ jo' h dt + i  tan-'(qo/&,) + in/2] 

x [cosh @ sin @'+ i sinh @ cos @'I 

= {[-EO sinh $'cos 4 "~- qo cosh @ sin @q 
+i[-qosinh @cos $"+Cacosh @ sin $"I} 

and 

-(2i&/A'l") cosh 

= { I - ~ ~ s i n h @ c o s ~ " - q ~ c o s h  @sin $"I 
- i [ -qos inh@cos~"+~Ocosh  @sin@']} 

(6.13) 

(6.14) 

x (k: + q$-1/2 exp( - yl' + Jo' h dt), 

By using (5.6), ( 6 4 ,  (6.12), (6.13) and (6.14) we obtain another type of solution 
of the wmmv equation (I. 1) 

u(x, t )  = { -(2U1/A1/') cosh 42- (2i&/A"'2)) cosh 41 }/A 

sinh @cos @"+ qo cosh @sin (b" 
=2( 

$) - Ip  enp(-yl'+[ h dt) . cosh'&'+(&q;) cos2 @' 

(6.15) sin4"+(&,/q0) tanh @cos$" 
1 + ( $/q?j) cos' @' sech' @ 

h d t  sech @ =450 exp(jo' ) 
which is the so-called breather solution [7]. 
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Figore 10. Periodically oscillating breather u(x, t )  

, In particular, if h= K,  = O  and KO= 1, then (6.15) reduces to a breather solution of 

The wave u(x, t )  defined by (6.15) may also be periodically oscillating or asymptoti- 
the mKdV equation in [7]. 

cally standing. We give the following examples. 

Example I2  (periodically oscillating breather). Suppose h =0, Kl = -8Ko =cos i/4, CO= 
qo= 1 and ~ ( 0 ,  lI(O))=exp(irr/4). Then (6.15) becomes 

u(x, t)=4 sin2x+tanh(-2x+sint- 1.5In2)cos2x sech(-Zx+sint-lSlnZ). 
l+cos22xsech2(-2x+sin~-1.51n2) 

Figure 10 shows the situation for u(x, t) in a certain interval of time. 

Example 13 (standing breather). Suppose h=O, KI =SKo=cos t/4, eo= qo= 1 and 
q(0, dl(0))=exp(in/4). Then (6.15) becomes 

~~ 

sin(2x-sin t)+tanh(->- 1.5111 2) cos(2x-sin t) 
1 +cos2(2x-sin I )  secb2(-2w- 1.5 In 2) 

u(x, t )  =4 sech(-2x.- 1.5 In 2). 

Figure 11 shows the situation for u(x,~r) in acertain interval of time. 

Figure 11. Standing breather P(X. 1). 
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Figure 12. Asymptotically standing breather u(x. t), 

Example 14 (asymptotically standing breather). Suppose h=O, K, =-WO= 1/4(1+ t2), 
to= qo= 1 and cl(O, kl(0))=exp(in/4). Then (6.15) becomes 

sin2x+tanh(-2x+tan-1t-1.51n2)cos2x 
1 +cos2 2x sech2(-2x+ tan-' t- 1.5 In 2) 

u(x, 1)=4 sech(-2x+tan-' t - l . S l n 2 ) .  

Figure 12 shows the situation for u(x, t). 
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